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Time Series Between Two Vector Valued 
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Abstract—The continuous expanded finite Fourier transform of strictly stability (r+s) vector-valued time series are considered, under the assumption 

that some of the observations are missed . The asymptotic moments are studied. We will our theoretical study to two cases Economy and Electricity 
Energy. 
     
Index Terms— Finite Fourier transform, Missing values, Data window, Continuous Stability time series. 

——————————      —————————— 

1   INTRODUCTION 

We consider the problem the selection of s - vector,    

, and rs filter so that   )()()( tXutatY ,  assuming that 

there is linear relation between )(tX and )(tY , we study the 

Asymptotic properties of expanded finite Fourier transform 
under this relation  the expanded finite Fourier transform 
discussed in D.R. Brillinger, M. Rosenblatt,  (1967),  D.R. 
Brillinger (1969), Brillinger (2001),  Ghazal and Farag (2001),  
Ghazal (2002),  Teamah (2004),  Ghazal,  Farag and El- 
Desokey (2005),  M.A. Ghazal, G.S. Mokaddis, A.E.EL-
Desokey (2009),  G.S. Mokaddis, M.A. Ghazal and A.E. El-
Desokey (2010),  A. Elhassanein(2011),  (2014). 
      The paper is organized as follows : In Section(1) 
Introduction,  Section (2) we will study the Asym-   ptotic 
properties of the (observed) process, Section (3) will be 
considered the expanded finite Fourier transform with 
missed observations,  and Section (4) application our 
theoretical study where we apply this method in the Arab 
Cement Company of monthly production and quantity of 
cement sold in the period from January 2010 until 
December 2015 and in General Electric Company of 
monthly Sent Energy and export  Energy in the period from 
January 2006 until December 2015.  
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And the second-order spectral densities 
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Let )(,.....,2,1,)( RtratHa   be a process independent 

of )(tB  such that every t  
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   Note  that                ,)( PtHE a                             (2.6)                

   
      
   The success of recording an observation not depend on 
the fail of another and so it is independent . We may then 
define the modified series as 
 

                      )()()( tBtHtW      ,        (2.7) 
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Assumption: 

Let )()( th T

a be a bounded and bounded variation 

and vanishes for 10  Tt .That  is called data window 

and satisfies  
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We will now select of  an s -vector ,  , and an rs  filter 

)}({ ua , so that  
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which is close to )(tY . Suppose we measure closeness by 

the ss  Hermitian matrix 
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Theorem 2.1 [7]: 
Consider an )( sr   vector-valued second-order stability time 

series of the form (2.1) with mean (2.2) and autocovariance 

function (2.3), suppose )(,)( ucuc yyxx are absolutely 

summable and suppose )(xxf  given by (2.4),  is nonsingular, 

R . Then the,  , and )(ua that minimize (2.11) are given 

by  
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is absolutely summable. The minimum 
achieved is  
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3  THE EXPANDED FINITE FOURIER TRANSFORM WITH 

MISSED OBSERVATIONS AND ITS PROPERTIES 
  

Theorem 3.1 

     Let ),min(,......,2,1,)()()( sratBtHtW aaa  are 

missed observations on the stable stochastic processes

),min(,......,2,1,)(),( sratYtX aa   and )(tH a
  is Bernoulli 

sequence of random variables which satisfies 
equations(2.8)and (2.9) , Then 
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          Proof.  

Since )(tHa is independent of )(tBa ,  then (3.1) 

is obtained . 
Now , turned to (3.2) we have  
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From equation (2.3) we have, 
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Then equation (3.2) obtained . 
 
Theorem 3.2 

    Let ),min(,......,2,1,)()()( sratBtHtW aaa  are missed 

observations on the stable stochastic processes

),min(,......,2,1,)(),( sratYtX aa   and )(tH a
 is Bernoulli 

sequence of random variables which satisfies equations(2.8)and 

(2.9) , and )()( th T

a satisfies Assumption.  We define the 

continuous expanded finite Fourier transform by  
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For large T , this variate will be distributed approximately as 
complex Normal Distribution as  
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Then equation (3.4) is obtained . 
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Proof. 
       The proof comes directly from Lemma (3.2) and 
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which completes the proof of the theorem. 

4. APPLICATION OF  OUR THEORETICAL STUDY 

    We will apply our theoretical study to a practical cases in 
Economy and Electricity Energy as following: 

4.1. Studying the Production and Cement Sold .  

    The data available in this research represents the average 
of the monthly production of Cement producer Arabian 
cement company and the Cement sold for the period from 

January 2010 to December 2015.  

4.1.1. Studying the Production . 

     In this study we will comparison between our results, 

model of strictly stability time series with some missing 

observations and the classical results, where all 

observations are available. 

Let ratXtHt aaa ,......,2,1,)()()(  , where

,.....)1,0(,)( ttX a
be a strictly stability r-vector valued 

time series and )(tH a is Bernoulli sequence of random 

variable which is stochastically independent of )(tX a , we 

suppose know that the data ],.....,2,1((,)( TttX a  which is 

the average of the monthly production, where all 
observations are available of the series is available with 

some missing observations. )()(,1 tXtH aa   , which is 

the classical case and suppose that there is some missing 

observations in randomly way, i.e., 0H , table (4.1.1) 

shows comparison these results  with and without missed 
observations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE4.1.1 

COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED 

OBSERVATIONS OF THE PRODUCTION . 

with missed observations without missed observations 
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ARIMA Model: Production with 
missed observations 
 

)1,1,1(ARIMA
  

Final Estimates of Parameters 
Type    Coef     SE Coef   T      P 
AR1    0.5595   0.1074   5.21  .000 
MA 1   0.9748  0.045    21.35 0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 72, after 
differencing  71 
Residuals: SS = 26976104349 
(back forecasts excluded) 

MS = 396707417 DF = 68 
 
Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
 
Lag             12     24       36      48 
Chi-Square 11.4  23.6    40.6   52.5 

 
ARIMA Model: Production without 
missed observations 
  

)1,1,1(ARIMA   

Final Estimates of Parameters 
Type    Coef   SE Coef     T        P 
AR 1 0.5007      0.111    4.48    000 
MA 1  0.9739   0.0464   20.98 .000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 72, after 
differencing  71 
Residuals: SS = 30175541940 
(back forecasts excluded) 

MS = 44375970 DF = 68 
 
Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
 
Lag             12      24      36    48 
Chi-Square 11.5   21.7  37.7  49.8 

DF               9       21        33     45 
P-Value   0.250 0.315  0.169  0.206 

 

DF               9       21     33     45 
P-Value   0.241   0.415  0.263  .289 

 

 

4.1.2. Studying the Cement Sold  

In this study we will comparison between our 

results, model of strictly stability time series with some 

missing observations and the classical results, where all 

observations are available. 

         Let satYtHt aaa ,......,2,1,)()()(  , where 

,.....)1,0(,)( ttYa
be a strictly stability s-vector valued time 

series and )(tH a
is Bernoulli sequence of random variable 

which is stochastically independent of )(tYa
 ,  we suppose 

know that the data ],.....,2,1((,)( TttYa  which is the 

average of the monthly Cement sold, where all 
observations are available of the series is available with 
some missing observations. )()(,1 tYtH aa  , which is the 

classical case and suppose that there is some missing 
observations in randomly way, i.e., 0H , table (4.1.2) 

shows comparison these results  with and without missed 
observations 
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TABLE4.1.2 

COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED 

OBSERVATIONS OF THE CEMENT SOLD 

with missed observations without missed observations  
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ARIMA Model: The Cement sold 
without missed observations 

)1,1,1(ARIMA
  

Final Estimates of Parameters 
Typ    Coef    SE Coef    T        P 
AR 1 0.5606  0.1070   5.24  0.000 
AM 1 0.977   0.0499  21.75  0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 72, after 
differencing  71 
Residuals: SS = 15118432102 
(back forecasts excluded) 

MS = 222329884 DF = 68 
 
Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
Lag            12     24       36     48 
Chi-Square 7.5   19.9    35.6  47.7 
DF               9       21      33     45 
P-Value 0.614 0.526  0.348  0.362 

 

 
ARIMA Model: The Cement sold 
without missed observations 

)1,1,1(ARIMA
  

Final Estimates of Parameters 
Typ     Coef    SE Coef     T         P 
AR 1  0.5058  0.1108    4.57  0.000 
AM 1 0.9772 0.0452   21.60  0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 72, after 
differencing  71 
Residuals: SS = 16812512213 
(back forecasts excluded) 

MS = 247242827 DF = 68 
 
Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
Lag           12     24     36      48 
Chi-Squar 7.6     23    37.3   50.5 
DF             9        21    33      45 
P-Value  0.575  0.346 0.279  0.266 

 

   4.1.3. Studying the Regression Between  

              Production and Cement Sold     

      In this study we will comparison between our results, 

regression model between Monthly average of Production 

and average Monthly Cement sold with some missing 

observations and the classical results, where all 

observations are available, to compare two cases shown 

table (4.1.3) 

TABLE 4.1.3 

THE COMPARISON OF THE RESULTS WITH AND WITHOUT  MISSED 

OBSERVATIONS OF THE REGRESSION ANALYSIS 

Without missed observations With missed observations 
The regression equation is 
 
Cement sold  = 3363 + 0.737 Production 
 
Predictor      Coef      SE Coef       T          P 
 
Constant      3362.8    611.2         5.50     0.000 
 
Production   0.73695   0.01348    54.65   0.000 
 
S = 2931.16   R-Sq = 97.7%   R-Sq(adj) = 97.7% 
 
Analysis of Variance 
 
Source         DF       SS      MS           F           P 

 
Regression       1  256616 256616   2986.8  0.000 
 
Residual Error 70    601417        85916 
 
Total                71    26263033 
 
Durbin-watson statistic =1.77188 
 

The regression equation is 
 
Cement sold  = 3223 + 0.744 Production 
 
Predictor       Coef     SE Coef      T         P 
 
Constant     3323.1      520.7      6.19     0.000 
 
Production  0.74408   0.01172   63.5.84   0.000 
 
S = 2931.16   R-Sq = 98.3%   R-Sq(adj) = 98.3.6% 
 
Analysis of Variance 
 
Source    DF    SS       MS          F           P 

 
Regressio 1  257679  257679  4032.55     0.000 
 
Residual Error  70     447299374        6389991 
 
Total                 71     26215254504 
 
Durbin-watson statistic =1.76825 
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  4.1.4 Materials and Methods 

        We used  SPSS and  MINITAB, the software 
programming to solve our numerical example . 
 

  4.1.5 Results and Discussion 

(1) The study of the time series with missed 
observations had the same results of the study of 
the classical time series . 

(2) The study regression model between classical time 
series X(t) ,Y(t) had the same results as case of  
missed observations where the two models 
achieved the theoretical, Mathematical, and the 
least  squares conditions .  

                      

4.2 Studying the Sent Energy and the Export Energy.  

     The data available in this research represents the average 
of the monthly sent Energy of General Electric Company 
and the export Energy for the period from January 2006 to 

December 2015. 
  

   4.2.1 Studying the Sent Energy . 

         In this study we will comparison between our results, 
model of strictly stability time series with some missing 
observations and the classical results, where all 
observations are available. 

Let ratXtHt aaa ,......,2,1,)()()(  , where ,.....)1,0(,)( ttX a be a 

strictly stability r-vector valued time series and )(tHa is 

Bernoulli sequence of random variable which is 

stochastically independent of )(tX a , we suppose know 

that the data ],.....,2,1((,)( TttX a  which is the average of 

the monthly sent Energy, where all observations are 
available of the series is available with some missing 

observations. )()(,1 tXtH aa   , which is the classical 

case and suppose that there is some missing observations in 

randomly way, i.e., 0H , table (4.2.1) shows comparison 

these results  with and without missed observations. 
 

 
 

TABLE 4.2.1 

COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED 

OBSERVATIONS OF THE ENERGY SENT.   

with missed observations without missed bservations 
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ARIMA Model: Sent Energy with 
missed observations 
 

)1,1,1(ARIMA
  

Final Estimates of Parameters 
Type   Coef    E Coef     T     P 
AR1   0.559   0.0758   7.91   0.000 
MA1  0.9804  0.0132  74.25  0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 120, after 
differencing  119 
Residuals: SS = 3211731948 (back 
forecasts excluded) 

MS = 27687344 DF = 116 
 

Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
Lag              12     24      36        48 
Chi-Square   6.1  15.5     27.5    36.4 
DF                 9     21        33       45 
P-Value  0.731   0.796  0.738  0.815 

 

 
ARIMA Model: Sent Energy 
without missed observations  
 

)1,1,1(ARIMA
  

Final Estimates of Parameters 
Type   Coef  SE Coef     T        P 
AR 1  0.6224  0.0751  8.29   0.000 
MA 1  0.9781 0.0200  48.84 0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 120, after 
differencing  119 
Residuals: SS = 3346639081 (back 
forecasts excluded) 

MS = 28850337 DF = 116 
 

Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
Lag              12    24      36       48 
Chi-Square  8.8  19.0    30.3    45.7 
DF                9     21      33        45 
P-Value  0.460    0.585  0.602  .443 
 

 

   4.2.2 Studying the Export Energy. 

       In this study we will comparison between our results, 

model of strictly stability time series with some missing 

observations and the classical results, where all 

observations are available. 

Let satYtHt aaa ,......,2,1,)()()(  , where ,.....)1,0(,)( ttYa

be a strictly stability s-vector valued time series and )(tHa

is Bernoulli sequence of random variable which is 

stochastically independent of )(tYa ,  we suppose know 

that the data ],.....,2,1((,)( TttYa  which is the average of the 

monthly export energy, where all observations are available 
of the series is available with some missing observations.

)()(,1 tYtH aa  , which is the classical case and suppose 

that there is some missing observations in randomly way, 

i.e., 0H , table (4.2.2) shows comparison these results  

with and without missed observations. 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE 4.2.2 

COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED 

OBSERVATIONS OF THE EXPORT ENERGY. 

with missed observations without missed observations 
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ARIMA Model: The export Energy 
without missed observations  

)1,1,1(ARIMA
 

  
Final Estimates of Parameters 
Type   Coef SE  Coef    T          P 
AR1    0.6766   0.069   99.69  0.000 
AM 1  0.9802   0.0143  68.55  0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 120, after 
differencing  119 
Residuals: SS = 80427160 (back 
forecasts excluded) 

MS = 693338 DF = 116 
 

Modified Box-Pierce (Ljung-Box) Chi-
Square statistic 
Lag             12     24     36       48 
Chi-Square 12.2  26.0  36.3    50.7 
DF               9      21      33        45 
P-Value   0.202   0.205   0.317 0.258 
 

 
ARIMA Model: The export Energy 
without missed observations 

)1,1,1(ARIMA
  

 
Final Estimates of Parameters 
Type    Coef   SE Coef    T      P 
AR1    0.6836  0.0706  9.68  0.000 
AM 1 0.9784  0.0201  48.57  0.000 
 
Differencing: 1 regular difference 
Number of observations: Original 
series 120, after 
differencing  119 
Residuals: SS = 75289744 (back 
forecasts excluded) 

MS = 649050 DF = 116 
 

Modified Box-Pierce (Ljung-Box) 
Chi-Square statistic 
Lag            12      24     36       48 
Chi-Square  8.2   20.0  27.9    45 
DF                9     21     33       45 
P-Value   0.515  0.522  0.720  0.622 
 

 

4.2.3 Studying the Regression Between Sent and 

Export Energy 

   In this study we will comparison between our results, 
regression model between Monthly average of sent Energy 
and average Monthly export Energy with some missing 
observations and the classical results, where all 
observations are available, to compare two cases shown 
table (4.2.3) 
 

TABLE 4.2.3  

COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED 

OBSERVATIONS OF THE REGRESSION ANALYSIS  

Without missed observations Without missed observations 
 

The regression equation is 
 
Export Energy = 3371 + 0.164 Sent Energy 
 
Predictor       Coef         SE Coef       T            P 
 
Constant        3371          1352        2.49       0.014 
 
Sent Energy   0.163568  0.005399 30.29    0.000 
 
S = 463.317   R-Sq = 88.6%   R-Sq(adj) = 88.5% 
 
Analysis of Variance 
 
Source          DF     SS             MS        F             P 
 
Regression 1 197005063 1970050639 17.74  .000 
 
Residual Error   118     25330185      214663 
 
Total                  119     222335249 
 
 Durbin-watson statistic = 1.79867 
 

 

 

 

 
The regression equation is 
 
Export Energy = 2524 + 0.167 Sent  Energy 
 
Predictor      Coef          SE Coef       T               P 
 
Constant      2524          1685           1.50       0.037 
 
Sent Energy  0.167028   0.006724   24.84       0.000 
 
S = 537.098   R-Sq = 83.9%   R-Sq(adj) = 83.8% 
 
Analysis of Variance 
 
Source           DF       SS        MS              F          P 
 
Regression  1  178004361 178004361  617.05  0.000 
 
Residual Error  118  34040021    288475 
 
Total                 119     212044382 
 
 Durbin-watson statistic = 1.66860 
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4.2.4. Materials and Methods:

 
 

         We used  SPSS and  MINITAB, the software 
programming to solve our numerical example . 
 
 

  4.2.5. Results and Discussion: 
(1) The study of the time series with missed 

observations had the same results of the study of 
the   classical time series . 

(2) The study regression model between classical time 
series X(t) ,Y(t) had the same results as case of  
missed observations where the two models 
achieved the theoretical, Mathematical, and the 
least  squares conditions. 
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