Statistical analysis of Linear Stability Continuous Time Series Between Two Vector Valued Stochastic Process

M.A.Ghazal, A.I.El-desokey, A.M.Ben Aros

Abstract

The continuous expanded finite Fourier transform of strictly stability ($\mathrm{r}+\mathrm{s}$) vector-valued time series are considered, under the assumption that some of the observations are missed. The asymptotic moments are studied. We will our theoretical study to two cases Economy and Electricity Energy.

Index Terms— Finite Fourier transform, Missing values, Data window, Continuous Stability time series.

1 Introduction

We consider the problem the selection of s - vector, μ , and $s \times r$ filter so that $Y(t) \approx \sum a(t-u) X(t)$, assuming that there is linear relation between $X(t)$ and $Y(t)$, we study the Asymptotic properties of expanded finite Fourier transform under this relation the expanded finite Fourier transform discussed in D.R. Brillinger, M. Rosenblatt, (1967), D.R. Brillinger (1969), Brillinger (2001), Ghazal and Farag (2001), Ghazal (2002), Teamah (2004), Ghazal, Farag and ElDesokey (2005), M.A. Ghazal, G.S. Mokaddis, A.E.ELDesokey (2009), G.S. Mokaddis, M.A. Ghazal and A.E. ElDesokey (2010), A. Elhassanein(2011), (2014).

The paper is organized as follows : In Section(1) Introduction, Section (2) we will study the Asym- ptotic properties of the (observed) process, Section (3) will be considered the expanded finite Fourier transform with missed observations, and Section (4) application our theoretical study where we apply this method in the Arab Cement Company of monthly production and quantity of cement sold in the period from January 2010 until December 2015 and in General Electric Company of monthly Sent Energy and export Energy in the period from January 2006 until December 2015.

[^0]
2 The Asymptotic Properties the Observed Process

Consider an $(r+s)$ vector-valued stability series

$$
B(t)=\left[\begin{array}{l}
X(t) \tag{2.1}\\
Y(t)
\end{array}\right]
$$

$t=0, \pm 1, \pm 2, \ldots .$. with $X(t), r$ vector-valued and $Y(t)$, S vector-valued a strictly stability $(r+s)$ vector-valued series with components,

$$
\left[\begin{array}{l}
X_{j}(t) \\
Y_{i}(t)
\end{array}\right], j=1,2, \ldots, r, i=1,2, \ldots \ldots, s \text { all of whose moments }
$$

exist, and we define the means

$$
\begin{equation*}
E X(t)=0, E Y(t)=0 \tag{2.2}
\end{equation*}
$$

The covariances

$$
\begin{align*}
& E\left\{\left[X(t+u)-C_{x}\right]\left[X(t)-C_{x}\right]^{T}\right\}=C_{x x}(u), \\
& E\left\{\left[X(t+u)-C_{x}\right]\left[Y(t)-C_{y}\right]^{T}\right\}=C_{x y}(u), \tag{2.3}\\
& E\left\{\left[Y(t+u)-C_{y}\right]\left[Y(t)-C_{y}\right]^{T}\right\}=C_{y y}(u),
\end{align*}
$$

$f_{x x}(\lambda)=(2 \pi)^{-1} \int_{-\infty}^{\infty} C_{x x}(u) \operatorname{Exp}(-i \lambda u) d u$
$f_{x y}(\lambda)=(2 \pi)^{-1} \int_{-\infty}^{\infty} C_{x y}(u) \operatorname{Exp}(-i \lambda u) d u \quad, \quad$ for $\lambda \in R$
$f_{y y}(\lambda)=(2 \pi)^{-1} \int_{-\infty}^{\infty} C_{y y}(u) \operatorname{Exp}(-i \lambda u) d u$
Let $H_{a}(t), a=1,2, \ldots . ., r(t \in R)$ be a process independent of $B(t)$ such that every t

$$
\begin{align*}
& P\left[H_{a}(t)=1\right]=p_{a}, \\
& P\left[H_{a}(t)=0\right]=q_{a} \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
\text { Note that } \quad E\left\{H_{a}(t)\right\}=P \tag{2.6}
\end{equation*}
$$

The success of recording an observation not depend on the fail of another and so it is independent. We may then define the modified series as

$$
\begin{equation*}
W(t)=H(t) B(t) \tag{2.7}
\end{equation*}
$$

Where

$$
\begin{equation*}
W_{a}(t)=H_{a}(t) B_{a}(t) \tag{2.8}
\end{equation*}
$$

And
$H_{a}(t)=\left\{\begin{array}{l}1, \text { if } X_{a}(t), Y_{a}(t) \text { are observed } \\ 0, \text { otherwise }\end{array},(2.9)\right.$

Assumption:

Let $h_{a}^{(T)}(t)$ be a bounded and bounded variation and vanishes for $0<t<T-1$. That is called data window and satisfies

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} h_{a}^{(T)} d_{t} \underset{T \rightarrow \infty}{\longrightarrow} \int_{0}^{1} h_{a}(u) d u, \quad a=\overline{1, r} \\
& G^{(T)}{ }_{a_{1}, \ldots, a_{k}(\lambda)}=\int_{0}^{T}\left[\prod_{j=1}^{k} h_{a_{j}}^{(T)}(t)\right] \exp \{-i \lambda t\} d t
\end{aligned}
$$

We will now select of an s-vector, $\underline{\mu}$, and an $s \times r$ filter $\{a(u)\}$, so that

$$
\begin{equation*}
Y(t) \approx \underline{\mu}+\sum_{u=-\infty}^{\infty} a(t-u) X(u) \tag{2.10}
\end{equation*}
$$

which is close to $Y(t)$. Suppose we measure closeness by the $s \times s$ Hermitian matrix

$$
\begin{equation*}
E\left\{\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}\right\},(2 \tag{2.11}
\end{equation*}
$$

Theorem 2.1 [7]:
Consider an $(r+s)$ vector-valued second-order stability time series of the form (2.1) with mean (2.2) and autocovariance function (2.3), suppose $c_{x x}(u), c_{y y}(u)$ are absolutely summable and suppose $f_{x x}(\lambda)$ given by (2.4), is nonsingular, $\lambda \in R$. Then the, $\underline{\mu}$, and $a(u)$ that minimize (2.11) are given by
$\underline{\mu}=c_{y}-\left(\sum_{u=-\infty}^{\infty} a(u)\right) c_{x}=c_{y}-A(0) c_{x}$,
and

$$
\begin{equation*}
a(u)=(2 \pi)^{-1} \int_{0}^{2 \pi} A(\alpha) \operatorname{Exp}\{i u \alpha\} d \alpha \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\lambda)=f_{y x}(\lambda) f_{x x}(\lambda)^{-1} \tag{2.14}
\end{equation*}
$$

The filter
achieved is $\{a(u)\}_{\text {is absolutely summable. The minimum }}$ achieved is

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[f_{y y}(\alpha)-f_{y x}(\alpha) f_{x x}(\alpha)^{-1} f_{x y}(\alpha)\right] d \alpha \tag{2.15}
\end{equation*}
$$

3 The Expanded Finite Fourier Transform With Missed Observations and Its Properties

Theorem 3.1

$\operatorname{Let} W_{a}(t)=H_{a}(t) B_{a}(t), a=1,2, \ldots \ldots, \min (r, s)$ are
missed observations on the stable stochastic processes $X_{a}(t), Y_{a}(t), a=1,2, \ldots \ldots, \min (r, s)$ and $H_{a}(t)$ is Bernoulli sequence of random variables which satisfies equations(2.8) and (2.9), Then

$$
\begin{gather*}
E\left\{W_{a}(t)\right\}=0, \tag{3.1}\\
\operatorname{Cov}\left\{W_{a_{1}}\left(t_{1}\right), W_{a_{2}}\left(t_{2}\right)\right\}=\left[\begin{array}{cc}
P_{a, a_{2}} c_{x x}(u) & P_{a, a_{2}} c_{x x}(u) A(\lambda)^{T} \\
P_{a, a_{2}} A(\lambda) c_{x x}(u) & P_{a, a_{2}} A(\lambda) c_{x x}(u) A(\lambda)^{T}
\end{array}\right] \tag{3.2}
\end{gather*}
$$

Proof.

Since $H_{a}(t)$ is independent of $B_{a}(t)$, then (3.1) is obtained .
Now , turned to (3.2) we have

$$
\begin{aligned}
& \operatorname{Cov}\left\{W_{a_{1}}\left(t_{1}\right), W_{a_{2}}\left(t_{2}\right)\right\}=\operatorname{Cov}\left\{H_{a_{1}}(t) B_{a_{1}}(t), H_{a_{2}}(t) B_{a_{2}}(t)\right\} \\
& =\operatorname{Cov}\left\{\left[\begin{array}{l}
H_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) \\
H_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right)
\end{array}\right],\left[\begin{array}{l}
H_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) \\
H_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right)
\end{array}\right]^{T}\right\}
\end{aligned}
$$

$$
=E\left\{\begin{array}{ll}
H_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) & H_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right) \\
H_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) & H_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right)
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
E\left[H_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right)\right] \operatorname{cov}\left[X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] E\left[H_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[X_{a_{1}}\left(t_{1}\right), Y_{a_{2}}\left(t_{2}\right)\right] \\
E\left[H_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[Y_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] E\left[H_{a_{1}}\left(t_{1}\right) H_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[Y_{a_{1}}\left(t_{1}\right), Y_{a_{2}}\left(t_{2}\right)\right]
\end{array}\right\}
$$

$$
=\left\{\begin{array}{cc}
\left.p_{a a_{2}} \operatorname{Cov} \mid X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & \left.p_{a a_{2}} \operatorname{Cov} \mid X_{a_{1}}\left(t_{1}\right), \mu+A(\alpha) X_{a_{2}}\left(t_{2}\right)\right] \\
p_{a a_{2}} \operatorname{Cov}\left[\mu+A(\alpha) X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & p_{a a_{2}} \operatorname{Cov}\left[\mu+A(\alpha) X_{a_{1}}\left(t_{1}\right), \mu+A(\alpha) X_{a_{2}}\left(t_{2}\right)\right]
\end{array}\right\}
$$

From equation (2.3) we have,

$$
=\left[\begin{array}{cc}
P_{a_{1} a_{2}} c_{x x}(u) & P_{a_{1} a_{2}} c_{x x}(u) A(\lambda)^{T} \\
P_{a_{1} a_{2}} A(\lambda) c_{x x}(u) & P_{a_{1} a_{2}} A(\lambda) c_{x x}(u) A(\lambda)^{T}
\end{array}\right]
$$

Then equation (3.2) obtained.

Theorem 3.2

$$
\operatorname{Let}_{a}(t)=H_{a}(t) B_{a}(t), a=1,2, \ldots \ldots, \min (r, s) \text { are missed }
$$ observations on the stable stochastic processes $X_{a}(t), Y_{a}(t), a=1,2, \ldots \ldots ., \min (r, s)$ and $H_{a}(t)$ is Bernoulli sequence of random variables which satisfies equations(2.8) and (2.9), and $h_{a}^{(T)}(t)$ satisfies Assumption. We define the continuous expanded finite Fourier transform by

$$
\begin{equation*}
d_{a}^{(T)}(\lambda)=\left[2 \pi \int_{0}^{T}\left(h_{a}^{(T)}(t)\right)^{2-1 / 2} \times \int_{-\infty}^{\infty} h_{a}^{(T)}(t) W_{a}(t) \exp \{-i \lambda t\} d t, \text { for } \lambda \in R,\right. \tag{3.3}
\end{equation*}
$$

For large T, this variate will be distributed approximately as complex Normal Distribution as

$$
N_{r+s}^{c}\left(\underline{0},\left[\begin{array}{ll}
k_{1} & k_{2} \tag{3.4}\\
k_{3} & k_{4}
\end{array}\right]\right)
$$

Where

$$
\begin{aligned}
& k_{1}=P_{a_{1} a_{2}} \int_{R} f_{a_{1} a_{2}}(v) \phi_{a_{1} a_{2}}{ }^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v \\
& k_{2}=P_{a_{1} a_{2}} \int_{R} f_{a_{1} a_{2}}(v) A(\lambda)^{T} \phi_{a_{1} a_{2}}{ }^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v, \\
& k_{3}=P_{a_{1} a_{2}} \int_{R} A(\lambda) f_{a_{1} a_{2}}(v) \phi_{a_{1} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v, \\
& k_{4}=P_{a_{1} a_{2}} \int_{R} A(\lambda) f_{a_{1} a_{2}}(v) A(\lambda)^{T} \phi_{a_{1} a_{2}}{ }^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v,
\end{aligned}
$$

Proof.

From equations (3.1) and (3.3), then

$$
E\left\{d_{a}(t)\right\}=0
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left\{d_{a_{1}}^{(T)}\left(\lambda_{1}\right), d_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}=E\left\{d_{a_{1}}^{(T)}\left(\lambda_{1}\right) \overline{d_{a_{2}}^{(T)}\left(\lambda_{2}\right)}\right\} \\
& =(2 \pi)^{-1}\left[\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T}\left(h_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}\right]^{-1 / 2} \times
\end{aligned}
$$

$$
\times \int_{t_{1}=0 t_{2}=0}^{T} \int_{a_{1}}^{T} h_{1}\left(t_{1}\right) h_{a_{2}}\left(t_{2}\right) \operatorname{Cov}\left(W_{a_{1}}\left(t_{1}\right), W_{a_{2}}\left(t_{2}\right)\right) \exp \left(-i\left(t_{1} \lambda_{1}-t_{2} \lambda_{2}\right) d t_{1} d t_{2}\right.
$$

From (3.2) then we get

$$
\operatorname{Cov}\left\{d_{a_{1}}^{(T)}\left(\lambda_{1}\right), d_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}=(2 \pi)^{-1}\left[\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T}\left(h_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2}\right]^{-1 / 2} \times
$$

$$
\begin{aligned}
& \times \int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T} h_{a_{1}}\left(t_{1}\right) h_{a_{2}}\left(t_{2}\right) \exp \left(-i\left(t_{1} \lambda_{1}-t_{2} \lambda_{2}\right) d t_{1} d t_{2} \times\right. \\
& \times\left[\begin{array}{cc}
P_{a_{1} a_{2}} c_{x x}\left(t_{1}-t_{2}\right) & P_{a_{1} a_{2}} c_{x x}\left(t_{1}-t_{2}\right) A(\lambda)^{T} \\
P_{a_{1} a_{2}} A(\lambda) c_{x x}\left(t_{1}-t_{2}\right) & P_{a_{1} a_{2}} A(\lambda) c_{x x}\left(t_{1}-t_{2}\right) A(\lambda)^{T}
\end{array}\right]
\end{aligned}
$$

Setting $t_{1}-t_{2}=u, t_{2}=t$ we get

$$
\operatorname{Cov}\left\{d_{a_{1}}^{(T)}\left(\lambda_{1}\right), d_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}=(2 \pi)^{-1}\left[\int_{t_{1}=0=t_{2}=0}^{T}\left(h_{a_{1}}^{T}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}\right]^{-1 / 2} \times
$$

$$
\begin{align*}
& \times \int_{-T 0}^{T} \int_{a_{1}}^{T} h_{a_{1}}(t+u) h_{a_{2}}(t) \exp \left(-i t\left(\lambda_{1}-\lambda_{2}\right) d t d u \times\right. \\
& {\left[\begin{array}{cc}
P_{a_{1} a_{2}} c_{x x}(u) & P_{a_{1} a_{2}} c_{x x}(u) A(\lambda)^{T} \\
P_{a_{1} a_{2}} A(\lambda) c_{x x}(u) & P_{a_{1} a_{2}} A(\lambda) c_{x x}(u) A(\lambda)^{T}
\end{array}\right]=\left[\begin{array}{ll}
k_{1} & k_{2} \\
k_{3} & k_{4}
\end{array}\right]} \tag{3.6}
\end{align*}
$$

Now :

$$
\begin{equation*}
C_{x x}(u)=E\{X(t+u) X(t)\}=\int_{-\infty}^{\infty} f_{x x}(\lambda) \exp (i \lambda u) \tag{3.7}
\end{equation*}
$$

By substituting a bout formula (3.7) in (3.5) we get

$$
\begin{aligned}
& k_{1}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \exp \left(i v\left(t_{1}-t_{2}\right)(2 \pi)^{-1}\left[\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T}\left(h_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}\right]^{-1 / 2} \times\right. \\
& \times\left\{\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T} h_{a_{1}}\left(t_{1}\right) h_{a_{2}}\left(t_{2}\right) \exp \left(-i\left[\left(t_{1} \lambda_{1}-t_{2} \lambda_{2}\right)\right] d t_{1} d t_{2}\right\} d v\right. \\
& =p_{a_{1} a_{2}} \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v)(2 \pi)^{-1}\left[\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T}\left(h_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}\right]^{-1 / 2} \times \\
& \times\left\{\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T} h_{a_{1}}\left(t_{1}\right) h_{a_{2}}\left(t_{2}\right) \exp \left(-i\left[\left(\lambda_{1}-v\right) t_{1}-\left(\lambda_{2}-v\right) t_{2}\right] d t_{1} d t_{2}\right\} d v\right. \\
& k_{1}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \times \phi_{a_{1} a_{2}}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi_{a_{1} a_{2}}\left(\lambda_{1}-v, \lambda_{2}-v\right)=(2 \pi)^{-1}\left[\int_{t_{1}=0}^{T} \int_{t_{2}=0}^{T}\left(h_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}\right]^{-1 / 2} \times \\
& \times\left\{\int_{-T 0}^{T} \int_{0}^{T} h_{a_{1}}{ }^{(T)}(t+u) h_{a_{2}}{ }^{(T)}(t) \exp \left(-i\left[\left(\lambda_{1}-v\right) t-\left(\lambda_{2}-v\right) t\right] d t d t u\right\}\right.
\end{aligned}
$$

Similarly
$k_{2}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) A(\lambda)^{T} \times \phi_{a_{1} a_{2}}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$,
$k_{3}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} A(\lambda) f_{a_{1} a_{2}}(v) \times \phi_{a_{1} a_{2}}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$,
$k_{4}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} A(\lambda) f_{a_{1} a_{2}}(v) A(\lambda)^{T} \times \phi_{a_{1} a_{2}}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$,
Then equation (3.4) is obtained.

Corollary 3.1

Let $d_{a}^{(T)}(\lambda), a=1, \ldots \ldots ., \min (s, r)$ be defined as (3.3),
then the dispersion of $d_{a}^{(T)}(\lambda)$ satisfies the following property :

$$
\begin{gather*}
D d_{a}{ }^{(T)}(\lambda)=P_{a a} \times \\
\times\left[\begin{array}{cc}
\int_{-\infty}^{\infty} f_{a a}(\lambda-\gamma) \times \phi_{a a}(\gamma) d \gamma & \int_{-\infty}^{\infty} f_{a a}(\lambda-\gamma) A(\lambda)^{T} \times \phi_{a a}(\gamma) d \gamma \\
\int_{-\infty}^{\infty} A(\lambda) f_{a a}(\lambda-\gamma) \times \phi_{a a}(\gamma) d \gamma & \int_{-\infty}^{\infty} A(\lambda) f_{a a}(\lambda-\gamma) A(\lambda)^{T} \times \phi_{a a}(\gamma) d \gamma
\end{array}\right] \tag{3.8}
\end{gather*}
$$

Proof.

Form equation (3.4) we have

$$
D d_{a}^{(T)}(\lambda)=
$$

When $\lambda_{1}=\lambda_{2}=\lambda, \lambda \in R$ and
$a_{1}=a_{2}=a, a=1,2, \ldots \ldots, \min (r, s)$, by putting $\lambda-v=\gamma$, then formula (3.8) is obtained .

Lemma 3.1

Let $h_{a}{ }^{(T)}(t), t \in R, a=1, \ldots \ldots, \min (r, s)$ is bounded by a constant L and satisfying

$$
\left|h_{a}^{(T)}(t+u)-h_{a}(t)\right| \leq C|u|
$$

Then

$$
\begin{equation*}
\left|\int_{0}^{T} h_{a_{1}}{ }^{(T)}(t) h_{a_{2}}{ }^{(T)}(t) \exp (-i \lambda t) d t\right| \leq \frac{1}{|\lambda / 2|}+L C \tag{3.9}
\end{equation*}
$$

For some constants $L, \quad C$ and $\lambda, \lambda \in R, \lambda \neq 0, a_{1}, a_{2}=1, \ldots, \min (r, s)$.

Lemma 3.2

For $\lambda_{1}-\lambda_{2} \neq 0, \lambda_{1}, \lambda_{2} \in R$ and
$h_{a}^{(T)}(t), t \in R, a=1, \ldots \ldots ., \min (r, s)$ is bounded by constant L and satisfying Lipschitz condition (3.9) then
$\left|\operatorname{Cov}\left\{d_{a_{1}}{ }^{(T)}\left(\lambda_{1}\right), d_{a_{2}}{ }^{(T)}\left(\lambda_{2}\right)\right\}\right| \leq \frac{L C}{2 \pi \sqrt{\int_{0}^{T} \int_{0}^{T}\left(h_{a_{1}}{ }^{(T)}\left(t_{1}\right)\right)^{2}\left(h_{a_{2}}{ }^{(T)}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}}} \times$
$\times\left\{\left.\frac{1}{L C \mid\left(\lambda_{1}-\lambda_{2}\right) / 2} \int_{-T}^{T}\left|C_{a_{1} a_{2}}(u)\right| d u+\int_{-T}^{T} \right\rvert\, C_{a_{1} a_{2}}(u)[|u|+1] d u\right\}$ (3.10)
for $\quad a_{1}, a_{2}=1, \ldots \ldots, \min (r, s)$

Theorem 3.3

For $\lambda_{1}-\lambda_{2} \neq 0, \lambda_{1}, \lambda_{2} \in R$ and
$h_{a}{ }^{(T)}(t), t \in R, a=1, \ldots \ldots, \min (r, s)$ is bounded and

$$
\int_{-\infty}^{\infty}[|u|+1] C_{a_{1} a_{2}}(u) \mid d u<\infty
$$

then
$\operatorname{Lim}_{T \rightarrow \infty} \operatorname{Cov}\left\{d_{a_{1}}{ }^{(T)}\left(\lambda_{1}\right), d_{a_{2}}{ }^{(T)}\left(\lambda_{2}\right)\right\}=0 \quad$ for \quad all $a_{1}, a_{2}=1, \ldots \ldots, \min (r, s)$

Proof.

The proof comes directly from Lemma (3.2) and Assumption.

Theorem 3.4

For any $\lambda \in R$, the function $\phi_{a a}{ }^{(T)}(\lambda), a=1, \ldots \ldots ., \min (r, s)$ is the Kernel that satisfy the following properties :
(1) $\int_{-\infty}^{\infty} \phi_{a a}{ }^{(T)}(\lambda) d \lambda=1, a=1, \ldots ., \min (r, s)$,
(2) $\operatorname{Lim}_{T \rightarrow \infty} \int_{-\infty}^{-\delta} \phi_{a a}{ }^{(T)}(\lambda) d \lambda=\operatorname{Lim}_{T \rightarrow \infty} \int_{\delta}^{\infty} \phi_{a a}{ }^{(T)}(\lambda) d \lambda=0$,
(3) $\operatorname{Lim}_{T \rightarrow \infty} \int_{-\delta}^{\delta} \phi_{a a}{ }^{(T)}(\lambda) d \lambda=1$ for all
$\delta>0, a=1, \ldots \ldots, \min (r, s) \lambda \in R$.

Theorem 3.5

If the spectral density function $f_{a a}(x), a=1, \ldots, \min (r, s), x \in R$ is bounded and continuous at a point $x=\lambda, \lambda \in R$ and the function $\phi_{a a}{ }^{(T)}(x)$, satisfies the properties of theorem $a=1, \ldots, \min (r, s), x \in R$
then
$\operatorname{Lim}_{T \rightarrow \infty} D d_{a}^{(T)}(\lambda)=\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right], a=1, \ldots \ldots, \min (r, s)(3.14)$

Proof.

To prove formula (3.14), we must prove that

$$
\operatorname{Lim}_{T \rightarrow \infty}\left|D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right]\right|=0
$$

Now , from corollary (3.1) we have,
$\left|D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right]\right| \leq$ $\leq p_{a a} \int_{-\infty}^{\infty}\left[\begin{array}{cc}f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}\end{array}\right]-$

$$
\left.\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma \leq
$$

$$
\begin{aligned}
& \leq p_{a a} \int_{-\infty}^{-\delta}\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]- \\
& \left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma+ \\
& +p_{a a} \int_{-\delta}^{\delta}\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma+ \\
& +p_{a a} \int_{\delta}^{\infty} \left\lvert\,\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-\right. \\
& \left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma \\
& =A_{1}+A_{2}+A_{3} .
\end{aligned}
$$

Since $f_{a_{1} a_{2}}(\gamma)$ is continuous at a point

$$
\gamma=\lambda, a_{1}, a_{2}=1, \ldots, \min (r, s), \lambda \in R, \text { then we get }
$$

$$
A_{2}=p_{a a} \int_{-\delta}^{\delta}\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-
$$

$$
\left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma
$$

$$
=p_{a a}^{\delta} \int_{-\theta[}^{\delta}\left[\begin{array}{cc}
f_{a \alpha}(\lambda-\gamma)-f_{a u}(\lambda) & f_{a a}(\lambda-\gamma) A(\alpha)^{T}-f_{a a}(\lambda) A(\alpha)^{T} \\
f_{a \alpha}(\lambda-\gamma)-A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}-A(\alpha) f_{a \alpha}(\lambda) A(\alpha)^{T}
\end{array}\right] \times
$$

$$
\leq \varepsilon \int_{-\delta}^{\delta} \Omega_{a a}^{(T)}(\gamma) d \gamma \leq \varepsilon \int_{-\infty}^{\infty} \Omega_{a a}^{(T)}(\gamma) d \gamma \times \Omega_{a a}^{(T)}(\gamma) d \gamma
$$

Hence, $A_{2} \leq \varepsilon$. Now A_{2} is very small according to any ε is very small, consequently $A_{2}=0$. Suppose that $f_{a a}(\lambda) a=1, \ldots, \min (r, s), \lambda \in R$ is bounded by a constant M , then

$$
A_{1} \leq 2 M \int_{-\infty}^{-\delta} \Omega_{a a}^{(T)}(\gamma) d \gamma \xrightarrow[T \rightarrow \infty]{ } 0
$$

according to property (3.12). similarly $A_{3} \xrightarrow[T \rightarrow \infty]{ } 0$, therefore,
$\left\lvert\, D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right] \xrightarrow{T \rightarrow \infty} 0\right.$.
which completes the proof of the theorem.

4. Application of Our Theoretical Study

We will apply our theoretical study to a practical cases in Economy and Electricity Energy as following:

4.1. Studying the Production and Cement Sold .

The data available in this research represents the average of the monthly production of Cement producer Arabian cement company and the Cement sold for the period from January 2010 to December 2015.

4.1.1. Studying the Production .

In this study we will comparison between our results, model of strictly stability time series with some missing observations and the classical results, where all observations are available.

Let $\quad \varphi_{a}(t)=H_{a}(t) X_{a}(t), a=1,2, \ldots \ldots, r, \quad$ where $X_{a}(t),(t=0, \pm 1, \ldots .$.$) be a strictly stability r$-vector valued time series and $H_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $X_{a}(t)$, we suppose know that the data $X_{a}(t),(t=(1,2, \ldots \ldots, T]$ which is the average of the monthly production, where all observations are available of the series is available with some missing observations. $H=1, \varphi_{a}(t)=X_{a}(t)$, which is the classical case and suppose that there is some missing observations in randomly way, i.e., $H=0$, table (4.1.1) shows comparison these results with and without missed observations.

4.1.2. Studying the Cement Sold

In this study we will comparison between our results, model of strictly stability time series with some missing observations and the classical results, where all observations are available.

$$
\text { Let } \quad \psi_{a}(t)=H_{a}(t) Y_{a}(t), a=1,2, \ldots \ldots, s, \quad \text { where }
$$ $Y_{a}(t),(t=0, \pm 1, \ldots .$.$) be a strictly stability \mathrm{s}$-vector valued time series and $H_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $Y_{a}(t)$, we suppose know that the data $Y_{a}(t),(t=(1,2, \ldots \ldots, T]$ which is the average of the monthly Cement sold, where all observations are available of the series is available with some missing observations. $H=1, \Psi_{a}(t)=Y_{a}(t)$, which is the classical case and suppose that there is some missing observations in randomly way, i.e., $H=0$, table (4.1.2) shows comparison these results with and without missed observations

TABLE4.1.2
COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED observations of the Cement sold

ARIMA Model: The Cement sold without missed observations
ARIMA $(1,1,1)$
Final Estimates of Parameters
Typ Coef SE Coef T P
$\begin{array}{lllll}\text { AR } 1 & 0.5058 & 0.1108 & 4.57 & 0.000\end{array}$
AM $10.97720 .0452 \quad 21.600 .000$
Differencing: 1 regular difference Number of observations: Original series 72, after
differencing 71
Residuals: SS = 16812512213
(back forecasts excluded)
MS $=247242827 \mathrm{DF}=68$
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
$\begin{array}{lllll}\text { Lag } & 12 & 24 & 36 & 48\end{array}$ Chi-Squar 7.6 $23 \begin{array}{llll}37.3 & 50.5\end{array}$ $\begin{array}{lllll}\text { DF } & 9 & 21 & 33 & 45\end{array}$
P-Value 0.5750 .3460 .2790 .266

ARIMA Model: The Cement sold without missed observations
ARIMA $(1,1,1)$
Final Estimates of Parameters
Typ Coef SE Coef T P AR 10.56060 .10705 .240 .000 AM 10.9770 .049921 .750 .000

Differencing: 1 regular difference Number of observations: Original series 72, after differencing 71
Residuals: SS = 15118432102 (back forecasts excluded)

$$
M S=222329884 D F=68
$$

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

| Lag | 12 | 24 | 36 | 48 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}\text { Chi-Square } 7.5 & 19.9 & 35.6 & 47.7\end{array}$ $\begin{array}{lrrrc}\text { DF } & 9 & 21 & 33 & 45 \\ \text { P-Value } & 0.614 & 0.526 & 0.348 & 0.362\end{array}$

4.1.3. Studying the Regression Between Production and Cement Sold

In this study we will comparison between our results, regression model between Monthly average of Production and average Monthly Cement sold with some missing observations and the classical results, where all observations are available, to compare two cases shown table (4.1.3)

TABLE 4.1.3
THE COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED OBSERVATIONS OF THE REGRESSION ANALYSIS

Without missed observations					With missed observations				
The regression equation is					The regression equation is				
Cement sold $=3363+$ 0.737 Production					Cement sold $=3223+0.744$ Production				
Predictor	Coef	SE Coef	T	P	Predictor	Coef	SE Coef	T	P
Constant	3362.8	611.2	5.50 0	0.000	Constant	3323.1	520.7	6.19	0.000
Production	0.73695	0.01348	54.65	0.000	Production	n 0.74408	0.01172	63.5.8	$84 \quad 0.00$
$S=2931.16$	$\mathrm{R}-\mathrm{Sq}=$	97.7\% R-S	q $(\mathrm{adj})=$	97.7\%	$\mathrm{S}=2931.16$	$6 \mathrm{R}-\mathrm{Sq}=$	98.3\% R-	-Sq(adj)	j) $=98$.
Analysis of Variance					Analysis of Variance				
Source	DF S	S MS	F	P	Source D	DF SS	MS	F	P
Regression	1256	6616256616	2986.8	80.000	Regressio 1	1257679	2576794	4032.55	0.00
Residual Er	rror 70	601417	85916		Residual E	Error 70	44729937	374	638999
Total	7126	6263033			Total	71	262152545	4504	
Durbin-watson statistic $=1.77188$					Durbin-watson statistic $=1.76825$				

4.1.4 Materials and Methods

We used SPSS and MINITAB, the software programming to solve our numerical example .

4.1.5 Results and Discussion

(1) The study of the time series with missed observations had the same results of the study of the classical time series .
(2) The study regression model between classical time series $\mathrm{X}(\mathrm{t}), \mathrm{Y}(\mathrm{t})$ had the same results as case of missed observations where the two models achieved the theoretical, Mathematical, and the least squares conditions .

4.2 Studying the Sent Energy and the Export Energy.

The data available in this research represents the average of the monthly sent Energy of General Electric Company and the export Energy for the period from January 2006 to December 2015.

4.2.1 Studying the Sent Energy .

In this study we will comparison between our results, model of strictly stability time series with some missing observations and the classical results, where all observations are available.

Let $\varphi_{a}(t)=H_{a}(t) X_{a}(t), a=1,2, \ldots \ldots ., r$, where $X_{a}(t),(t=0, \pm 1, \ldots .$.$) be a$ strictly stability r-vector valued time series and $H_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $X_{a}(t)$, we suppose know that the data $X_{a}(t),(t=(1,2, \ldots ., T]$ which is the average of the monthly sent Energy, where all observations are available of the series is available with some missing observations. $H=1, \phi_{a}(t)=X_{a}(t)$, which is the classical case and suppose that there is some missing observations in randomly way, i.e., $H=0$, table (4.2.1) shows comparison these results with and without missed observations.

TABLE 4.2.1
COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED observations of the Energy sent.

ARIMA Model: Sent Energy without missed observations	ARIMA Model: Sent Energy with missed observations
ARIMA (1,1,1)	ARIMA (1,1,1)
Final Estimates of Parameters	Final Estimates of Parameters
Type Coef SE Coef T P	Type Coef E Coef T P
$\begin{array}{lllllllllllllll}\text { AR } 1 & 0.6224 & 0.07518 .290 .000\end{array}$	$\begin{array}{llllllllllllllllllll}\text { AR1 } & 0.559 & 0.0758 & 7.91 & 0.000\end{array}$
MA 10.97810 .020048 .840 .000	MA1 0.98040 .013274 .250 .000
Differencing: 1 regular difference	Differencing: 1 regular difference
Number of observations: Original series 120 , after differencing 119	Number of observations: Original series 120 , after differencing 119
Residuals: SS = 3346639081 (back forecasts excluded) $\text { MS }=28850337 \text { DF }=116$	Residuals: SS = 3211731948 (back forecasts excluded) $M S=27687344 \mathrm{DF}=116$
Modified Box-Pierce (Ljung-Box)	Modified Box-Pierce (Ljung-Box)
Chi-Square statistic	Chi-Square statistic
$\begin{array}{lllllll}\text { Lag } & 12 & 24 & 36 & 48\end{array}$	$\begin{array}{llllll}\text { Lag } & 12 & 24 & 36 & 48\end{array}$
Chi-Square $8.819 .0 \begin{array}{llll}30.3 & 45.7\end{array}$	Chi-Square $6.1 \begin{array}{llll}15.5 & 27.5 & 36.4\end{array}$
$\begin{array}{llllll}\text { DF } & 9 & 21 & 33 & 45\end{array}$	$\begin{array}{lllllll}\text { DF } & & 9 & 21 & 33 & 45\end{array}$
P-Value $0.460 \quad 0.5850 .602 .443$	$\begin{array}{llllll}\text { P-Value } & 0.731 & 0.796 & 0.738 & 0.815\end{array}$

4.2.2 Studying the Export Energy.

In this study we will comparison between our results, model of strictly stability time series with some missing observations and the classical results, where all observations are available.

Let $\Psi_{a}(t)=H_{a}(t) Y_{a}(t), a=1,2, \ldots \ldots, s$, where $Y_{a}(t),(t=0, \pm 1, \ldots .$. be a strictly stability s-vector valued time series and $H_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $Y_{a}(t)$, we suppose know that the data $Y_{a}(t),(t=(1,2, \ldots . ., T]$ which is the average of the monthly export energy, where all observations are available of the series is available with some missing observations. $H=1, \Psi_{a}(t)=Y_{a}(t)$, which is the classical case and suppose that there is some missing observations in randomly way, i.e., $H=0$, table (4.2.2) shows comparison these results with and without missed observations.

TABLE 4.2.2
COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED observations of the Export Energy.

ARIMA Model: The export Energy without missed observations ARIMA $(1,1,1)$

Final Estimates of Parameters
Type Coef SE Coef T P
$\begin{array}{lllll}\text { AR1 } & 0.6766 & 0.069 & 99.69 & 0.000\end{array}$
AM $10.9802 \quad 0.0143 \quad 68.550 .000$
Differencing: 1 regular difference Number of observations: Original series 120, after differencing 119
Residuals: SS = 80427160 (back forecasts excluded)

MS $=693338 \mathrm{DF}=116$
Modified Box-Pierce (Ljung-Box) ChiSquare statistic
$\begin{array}{lllll}\text { Lag } & 12 & 24 & 36 & 48\end{array}$
Chi-Square $\begin{array}{llll}12.2 & 26.0 & 36.3 & 50.7\end{array}$
$\begin{array}{llllll}\text { DF } & 9 & 21 & 33 & 45\end{array}$
$\begin{array}{lllll}P-V a l u e & 0.202 & 0.205 & 0.317 & 0.258\end{array}$

ARIMA Model: The export Energy without missed observations ARIMA $(1,1,1)$

Final Estimates of Parameters Type Coef SE Coef T P $\begin{array}{lllll}\text { AR1 } & 0.6836 & 0.0706 & 9.68 & 0.000\end{array}$ AM 10.97840 .020148 .570 .000

Differencing: 1 regular difference Number of observations: Original series 120, after differencing 119
Residuals: SS = 75289744 (back forecasts excluded)
$M S=649050$ DF $=116$
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
$\begin{array}{lllll}\text { Lag } & 12 & 24 & 36 & 48\end{array}$
Chi-Square $8.2 \quad 20.0 \quad 27.9 \quad 45$
$\begin{array}{lllll}\text { DF } & 9 & 21 & 33 & 45\end{array}$ $\begin{array}{llllll}P-V a l u e & 0.515 & 0.522 & 0.720 & 0.622\end{array}$

4.2.3 Studying the Regression Between Sent and Export Energy

In this study we will comparison between our results, regression model between Monthly average of sent Energy and average Monthly export Energy with some missing observations and the classical results, where all observations are available, to compare two cases shown table (4.2.3)

Table 4.2.3
COMPARISON OF THE RESULTS WITH AND WITHOUT MISSED OBSERVATIONS OF THE REGRESSION ANALYSIS

4.2.4. Materials and Methods:

We used SPSS and MINITAB, the software programming to solve our numerical example .

4.2.5. Results and Discussion:

(1) The study of the time series with missed observations had the same results of the study of the classical time series.
(2) The study regression model between classical time series $\mathrm{X}(\mathrm{t}), \mathrm{Y}(\mathrm{t})$ had the same results as case of missed observations where the two models achieved the theoretical, Mathematical, and the least squares conditions.

References

[1] D.R. Brillinger, M.Rosenblatt, Asymptotic theory of estimates of k-th order spectra, in: B. Harris (Ed.), Advanced Seminar on Spectral Analysis of time series, Wiley, New York, 1967, pp.153-188 .
[2] D.R. Brillinger, "Asymptotic properties of spectral estimates of second order", Biometrika56(2), (1969)375-390.
[3] R. Dahlhaus, "On a spectral density estimate obtained by averaging periodograms", J. Appl. Probab. 22(1985) 592-610.
[4] M.A. Ghazal, E.A. Farag, "Estimating the spectral density, autocovariance function and spectral measure of continuous-time stationary processes, in: Annual Conference", ISSR, Cairo, Vol.33, no. part, 1998, pp.1-20.
[5] M.A. Ghazal, "On a spectral density estimate on non-crossed intervals observation", Int. J. Appl. Math. 1 (8) (1999) 875-882.
[6] M.A. Ghazal, E.A. Farag, "Some Properties of The Expanded Finite Fourier Transform, Statistica", anno LX, no.3, 2000.
[7] D.R. Brillinger, Time Series Data Analysis and Theory (2001).
[8] A.A.M. Teamah , H.S. Bakouch, " Multitaper Multivriate Spectral Estimators Time Series with Distorted Observations", International Journal of Pure and Applied Mathematics,Vol,No.1(2004),45-57.
[9] Chris Chatfiold, The Analysis of Time series An Introduction . [10] M. A. Ghazal, E. A. Farag, A.E EL-Desokey," Some properties of the Discrete Expanded finite Fourier transform with missed Observations", Vol.40, No.3, 30 September (2005), pp887902.
[11] M.A. Ghazal and A. Elhassanein, "Periodogram Analysis with Missing Observations", J.Appl. Math. Computing Vol. 22 (2006), No.1-2,pp209-222.
[12] M.A. Ghazal, G.S. Mokaddis, A.E. El-Desokey, "Spectral analysis of strictly stationary continuous time series", Journal of Mathematical Sciences, Vol.3, No. 1 (2009).
[13] G.S. Mokaddis, M.A. Ghazal and A.E. El-Desokey, " Asymptotic Properties of Spectral Estimates of Second-Order with Missed Observations", Journal of Mathematics and statistics 6(1):10-16,(2010).
[14] A. ELhassanein, "Nonparametric Spectral Analysis On Disjoint Segments Of Observations", Journal of the Applied Mathematics, Statistics and Informatics(JAMSI),7 (2011),No.1.
[15] A. ELhassanein, "On the Theory of continuous Time series", IndianJ.Pure.Math,45(3):297-310,June(2014).

[^0]: (1) Department of Mathematics, Faculty of Science, University of Damietta, A.R. Egypt,
 (2) Lecturer in faculty of Computer Science and information system 6 th of October university, Egypt,
 (3) Department of Mathematics, Faculty of Science, University of Damietta, Egypt,

